// Load the TensorFlow.js model async function loadModel() { const model = await tf.loadLayersModel("model/model.json"); return model; } function preprocessAudio(filename) { // Load audio file const audio = new Audio(filename); // Generate a Mel-scaled spectrogram const spectrogram = tf.tidy(() => { const audioTensor = tf.browser.Audio(audio); const sampleRate = audioTensor.sampleRate(); const melSpectrogram = tf.signal.melSpectrogram(audioTensor, { sampleRate: sampleRate, hopLength: 512, nMels: 128, fMin: 0, fMax: 8000 }); const logMelSpectrogram = tf.math.log(melSpectrogram.add(1e-6)); const normalizedSpectrogram = logMelSpectrogram.div(tf.max(logMelSpectrogram)); return normalizedSpectrogram; }); return spectrogram; } // Classify the audio using the loaded model async function classifyAudio(model, audioData) { const preprocessedData = preprocessAudio(audioData); const audioTensor = tf.tensor(preprocessedData); const predictions = model.predict(audioTensor); const predictedClass = predictions.argMax().dataSync()[0]; return predictedClass; } // Handle form submission document.querySelector("form").addEventListener("submit", async function(event) { event.preventDefault(); const fileInput = document.getElementById("audioFile"); const file = fileInput.files[0]; const fileReader = new FileReader(); fileReader.onload = async function(event) { const audioData = event.target.result; // Load the model const model = await loadModel(); // Classify the audio const classificationResult = await classifyAudio(model, audioData); // Display the classification result const resultSection = document.getElementById("result"); resultSection.textContent = `Class: ${classificationResult}`; }; // Read the uploaded audio file fileReader.readAsArrayBuffer(file); });