spacedrive/docs/core/pairing.mdx
2025-12-02 06:02:16 -08:00

601 lines
16 KiB
Plaintext

---
title: Device Pairing
sidebarTitle: Device Pairing
---
Device pairing establishes trust between Spacedrive instances using cryptographic signatures and user-friendly codes. Once paired, devices can communicate securely and share data directly.
## How Pairing Works
Pairing uses a 12-word code to create a secure connection between two devices. The initiator generates the code, and the joiner enters it to establish trust.
### The Pairing Code
Spacedrive uses BIP39 mnemonic codes for pairing, which come in two formats:
#### Text Format (Local Network Only)
A 12-word BIP39 mnemonic for manual entry:
```
brave lion sunset river eagle mountain forest ocean thunder crystal diamond phoenix
```
This format:
- Works only on the same local network (mDNS discovery)
- Easy to read and type
- Contains 128 bits of entropy
- Valid for 5 minutes
- Never reused
#### QR Code Format (Local + Internet)
A JSON structure that enables both local and cross-network pairing:
```json
{
"version": 2,
"words": "brave lion sunset river eagle mountain forest ocean thunder crystal diamond phoenix",
"node_id": "6jn4e7l3pzx2kqhv..."
}
```
This format:
- Works across different networks and the internet
- Includes the initiator's node_id for pkarr discovery
- Enables automatic relay fallback
- Same 5-minute expiration
- Recommended for most use cases
### Security Model
The pairing protocol provides multiple security guarantees:
**Authentication**: Devices prove their identity using Ed25519 signatures
**Confidentiality**: All communication encrypted with session keys
**Integrity**: Challenge-response prevents tampering
**Forward secrecy**: New keys for each session
## Choosing a Pairing Method
### When to Use Text Codes
Text-based codes are best for:
- Devices on the same local network (home, office)
- Quick pairing without scanning QR codes
- Situations where QR scanning is inconvenient
**Limitations:**
- Only works on the same subnet
- Cannot traverse NATs or firewalls
- Requires both devices to be on the same physical or virtual network
### When to Use QR Codes
QR codes are recommended for:
- Pairing across different networks
- Remote device pairing over the internet
- Maximum reliability (falls back to relay if needed)
- Most production use cases
**Benefits:**
- Works anywhere with internet connectivity
- Automatic relay fallback for NAT traversal
- Faster on local networks (dual-path discovery)
- More reliable overall
## Pairing Process
### For the Initiator
<Steps>
<Step title="Generate Code">
Call the pairing API to generate a code:
```typescript
const result = await client.action("network.pair.generate", {});
// For local network pairing (manual entry)
console.log(`Share this code: ${result.code}`);
// For cross-network pairing (QR code)
console.log(`QR code data: ${result.qr_json}`);
// Contains: { version: 2, words: "...", node_id: "..." }
```
</Step>
<Step title="Wait for Connection">
The device advertises via mDNS (local) and pkarr (internet) and waits for a joiner. The code expires after 5 minutes.
**Advertisement includes:**
- Session ID (via mDNS user_data)
- Node address published to dns.iroh.link (via pkarr)
</Step>
<Step title="Verify Joiner">
When a joiner connects, the initiator sends a cryptographic challenge to verify they have the correct code and own their device keys.
</Step>
<Step title="Complete Pairing">
After verification, both devices exchange session keys and save the pairing relationship.
</Step>
</Steps>
### For the Joiner
<Steps>
<Step title="Enter Code">
Enter the code from the initiator (text or QR):
```typescript
// Manual entry (local network only)
await client.action("network.pair.join", {
code: "brave lion sunset river eagle mountain forest ocean thunder crystal diamond phoenix"
});
// QR code scan (local + internet)
await client.action("network.pair.join", {
code: '{"version":2,"words":"brave lion sunset...","node_id":"..."}'
});
// Manual entry with node_id (enables internet pairing)
await client.action("network.pair.join", {
code: "brave lion sunset...",
node_id: "6jn4e7l3pzx2kqhv..."
});
```
</Step>
<Step title="Discover Device">
The system searches for the initiator using:
- **Local network** (mDNS) - Scans for matching session_id
- **Internet** (pkarr/DNS) - Queries dns.iroh.link for node address (requires node_id)
- **Relay servers** - Automatic fallback if direct connection fails
With QR codes, both paths run simultaneously and the first to succeed wins.
</Step>
<Step title="Prove Identity">
Sign a challenge from the initiator to prove you have the code and own your
device keys.
</Step>
<Step title="Save Relationship">
Store the paired device information and session keys for future communication.
</Step>
</Steps>
## Technical Architecture
### Protocol Messages
The pairing protocol uses four message types:
```rust
pub enum PairingMessage {
// Joiner → Initiator: "I want to pair"
PairingRequest {
session_id: Uuid,
device_info: DeviceInfo,
public_key: Vec<u8>,
},
// Initiator → Joiner: "Prove you have the code"
Challenge {
session_id: Uuid,
challenge: Vec<u8>, // 32 random bytes
device_info: DeviceInfo,
},
// Joiner → Initiator: "Here's my signature"
Response {
session_id: Uuid,
response: Vec<u8>, // 64-byte Ed25519 signature
device_info: DeviceInfo,
},
// Initiator → Joiner: "Pairing complete"
Complete {
session_id: Uuid,
success: bool,
reason: Option<String>,
},
}
```
### State Machine
The PairingProtocolHandler manages session state:
```rust
pub enum PairingState {
// Initiator states
WaitingForConnection, // Code generated, waiting
ChallengeIssued, // Sent challenge to joiner
// Joiner states
Connecting, // Looking for initiator
ChallengeReceived, // Got challenge, signing
// Terminal states
Completed, // Success!
Failed(String), // Something went wrong
}
```
### Session Management
Each pairing attempt creates a session:
```rust
pub struct PairingSession {
session_id: Uuid, // Derived from code
state: PairingState, // Current state
remote_device: Option<DeviceInfo>,
created_at: SystemTime,
expires_at: SystemTime, // 5 minutes later
}
```
<Warning>
Sessions expire after 5 minutes. Users must complete pairing within this time
window.
</Warning>
## Discovery Mechanisms
Devices find each other through multiple methods, depending on the pairing code format:
### Local Network (mDNS)
On the same network, devices discover each other instantly using multicast DNS:
```rust
// Initiator broadcasts session_id via user_data
endpoint.set_user_data_for_discovery(Some(session_id));
// Joiner listens for matching session_id
discovery_stream.filter(|item| {
item.node_info().data.user_data() == session_id
});
```
**How it works:**
- Initiator includes session_id in mDNS broadcasts
- Joiner scans local network for matching session_id
- Typically connects in 1-3 seconds
- Only works on the same subnet
### Internet (Pkarr/DNS)
For pairing across networks, Spacedrive uses pkarr to publish and resolve node addresses via DNS:
```rust
// Automatic pkarr publishing (done by Iroh)
.add_discovery(PkarrPublisher::n0_dns()) // Publish to dns.iroh.link
.add_discovery(DnsDiscovery::n0_dns()) // Resolve from dns.iroh.link
// Joiner queries by node_id
let node_addr = NodeAddr::new(node_id); // Pkarr resolves in background
endpoint.connect(node_addr, PAIRING_ALPN).await?;
```
**How it works:**
- Initiator automatically publishes its address to `dns.iroh.link` via pkarr
- Record includes relay_url and any direct addresses
- Joiner queries `dns.iroh.link` with the node_id from QR code
- Pkarr returns all connection options (relay + direct)
- Takes 5-15 seconds including DNS resolution
<Info>
Pkarr uses DNS-based discovery backed by the Mainline DHT. It's more reliable than traditional DHT for NAT traversal and works globally.
</Info>
### Dual-Path Discovery
When using QR codes (with node_id), Spacedrive races both discovery methods:
```rust
tokio::select! {
result = try_mdns_discovery(session_id) => {
// Fast path: local network
}
result = try_relay_discovery(node_id) => {
// Reliable path: internet via pkarr
}
}
// First to succeed wins, other is canceled
```
This approach optimizes for speed on local networks while ensuring reliability across the internet.
### Relay Servers
When direct connection fails, devices automatically connect through relay servers:
```rust
// Relay mode configured at startup
.relay_mode(RelayMode::Default) // Uses n0's production relays
// Automatic relay fallback during connection
endpoint.connect(node_addr, PAIRING_ALPN).await?; // Tries direct, then relay
```
**Current Configuration:**
- Uses n0's default relay servers (North America, Europe, Asia-Pacific)
- Relay URLs discovered automatically via pkarr
- Custom relay support coming soon (configurable per-node)
<Info>
Relay servers only forward encrypted QUIC traffic. They cannot decrypt your data or compromise security.
</Info>
## Cryptographic Details
### Challenge-Response Authentication
The challenge-response prevents replay attacks and verifies device identity:
```rust
// Initiator generates challenge
let challenge = rand::thread_rng().gen::<[u8; 32]>();
// Joiner signs challenge
let signature = signing_key.sign(&challenge);
// Initiator verifies signature
let valid = verifying_key.verify(&challenge, &signature).is_ok();
```
### Key Derivation
Session keys are derived from the pairing code and device identities:
```rust
// Derive shared secret from pairing code
let shared_secret = hkdf::extract(
&pairing_code.secret,
&[initiator_id, joiner_id].concat()
);
// Generate session keys
let (tx_key, rx_key) = hkdf::expand(
&shared_secret,
b"spacedrive-session-keys",
64
);
```
### Pkarr Implementation
Spacedrive uses pkarr for decentralized node address resolution:
```rust
// Automatic publishing (initiator)
let endpoint = Endpoint::builder()
.add_discovery(PkarrPublisher::n0_dns()) // Publishes to dns.iroh.link
.bind().await?;
// Automatic resolution (joiner)
let endpoint = Endpoint::builder()
.add_discovery(DnsDiscovery::n0_dns()) // Resolves from dns.iroh.link
.bind().await?;
// Discovery happens automatically during connection
endpoint.connect(NodeAddr::new(node_id), PAIRING_ALPN).await?;
```
**How Pkarr Works:**
- Uses DNS TXT records backed by the Mainline DHT
- Records include relay URL and direct addresses
- Automatic publishing every time the node's address changes
- TTL-based caching for performance
- No manual DHT interaction required
### Transport Security
All pairing communication uses encrypted channels:
1. **QUIC encryption**: TLS 1.3 at transport layer
2. **Application encryption**: Additional layer using session keys
3. **Perfect forward secrecy**: New keys each session
## Error Handling
### Common Errors
```rust
pub enum PairingError {
// User errors
InvalidCode, // Wrong or malformed code
CodeExpired, // Took too long
// Network errors
DeviceNotFound, // Can't find initiator
ConnectionFailed, // Network issues
// Security errors
InvalidSignature, // Challenge verification failed
UntrustedDevice, // Device key mismatch
// State errors
SessionNotFound, // Unknown session ID
InvalidState, // Wrong state transition
}
```
### Recovery Strategies
**Invalid code**: Check spelling, ensure correct code
**Connection failed**: Check network, firewall settings
**Timeout**: Generate new code and try again
**Signature failed**: Restart both applications
## Implementation Guide
### Starting Pairing (Initiator)
```rust
// High-level API
pub async fn start_pairing_as_initiator(
&self
) -> Result<PairingCode> {
// Generate secure code
let code = PairingCode::generate();
let session_id = code.derive_session_id();
// Create session
let session = PairingSession::new_initiator(session_id);
self.sessions.insert(session_id, session);
// Advertise on network
self.advertise_pairing(session_id).await?;
Ok(code)
}
```
### Joining Pairing (Joiner)
```rust
// High-level API
pub async fn start_pairing_as_joiner(
&self,
code: &str
) -> Result<()> {
// Parse and validate code
let pairing_code = PairingCode::from_str(code)?;
let session_id = pairing_code.derive_session_id();
// Create session
let session = PairingSession::new_joiner(session_id);
self.sessions.insert(session_id, session);
// Find and connect to initiator
let initiator = self.discover_initiator(session_id).await?;
self.connect_and_pair(initiator, session_id).await?;
Ok(())
}
```
### Handling Protocol Messages
```rust
impl PairingProtocolHandler {
async fn handle_message(
&mut self,
msg: PairingMessage,
peer_id: PeerId,
) -> Result<()> {
match msg {
PairingMessage::PairingRequest { .. } => {
self.handle_pairing_request(..);
}
PairingMessage::Challenge { .. } => {
self.handle_challenge(..);
}
PairingMessage::Response { .. } => {
self.handle_response(..);
}
PairingMessage::Complete { .. } => {
self.handle_complete(..);
}
}
}
}
```
## Testing Pairing
### Unit Tests
```rust
#[test]
fn test_pairing_code_generation() {
let code = PairingCode::generate();
assert_eq!(code.words.len(), 12);
assert!(code.is_valid());
}
#[test]
fn test_challenge_response() {
let (signing_key, verifying_key) = generate_keypair();
let challenge = generate_challenge();
let signature = signing_key.sign(&challenge);
assert!(verifying_key.verify(&challenge, &signature).is_ok());
}
```
### Integration Tests
```rust
#[tokio::test]
async fn test_full_pairing_flow() {
// Start initiator
let code = initiator.start_pairing_as_initiator().await?;
// Join with code
joiner.start_pairing_as_joiner(&code.to_string()).await?;
// Verify both paired
assert!(initiator.is_paired_with(joiner.device_id()));
assert!(joiner.is_paired_with(initiator.device_id()));
}
```
## Best Practices
### For Users
1. **Prefer QR codes**: Use QR codes for reliability across any network
2. **Share codes securely**: Use encrypted messaging or voice calls for text codes
3. **Complete quickly**: Codes expire in 5 minutes
4. **Verify device names**: Check the paired device is correct
5. **One code at a time**: Cancel old attempts before starting new ones
6. **Check network connectivity**: For cross-network pairing, ensure internet access
### For Developers
1. **Handle all states**: Account for every possible state transition
2. **Clean up sessions**: Remove expired sessions promptly
3. **Log failures**: Record why pairing failed for debugging
4. **Test edge cases**: Network failures, timeouts, wrong codes
## Troubleshooting
### Pairing Fails Immediately
Check:
- Both devices have network connectivity
- Firewalls allow Spacedrive traffic
- System time is roughly correct (within 5 minutes)
### Cannot Find Device
**For text-based codes:**
- Ensure both devices are on the same local network
- Check that mDNS is not blocked by firewalls
- Text codes only work locally - use QR codes for cross-network pairing
**For QR codes:**
- Ensure both devices have internet connectivity
- Check that the node_id is included in the QR code
- Verify dns.iroh.link is accessible (not blocked by corporate firewalls)
- Try generating a fresh code
### Code Invalid or Expired
Solutions:
- Double-check spelling of all 12 words
- Ensure code was entered within 5 minutes
- Generate new code if expired
- Check for typos in word order
## Related Documentation
- [Networking](/docs/core/networking) - Network transport details
- [Devices](/docs/core/devices) - Device management system
- [Security](/docs/core/security) - Cryptographic architecture